3.916 \(\int \frac {1}{x^2 (-2-3 x^2)^{3/4}} \, dx\)

Optimal. Leaf size=105 \[ \frac {\sqrt {3} \sqrt {-\frac {x^2}{\left (\sqrt {-3 x^2-2}+\sqrt {2}\right )^2}} \left (\sqrt {-3 x^2-2}+\sqrt {2}\right ) \operatorname {EllipticF}\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{-3 x^2-2}}{\sqrt [4]{2}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{2} x}+\frac {\sqrt [4]{-3 x^2-2}}{2 x} \]

[Out]

1/2*(-3*x^2-2)^(1/4)/x+1/8*2^(3/4)*(cos(2*arctan(1/2*(-3*x^2-2)^(1/4)*2^(3/4)))^2)^(1/2)/cos(2*arctan(1/2*(-3*
x^2-2)^(1/4)*2^(3/4)))*EllipticF(sin(2*arctan(1/2*(-3*x^2-2)^(1/4)*2^(3/4))),1/2*2^(1/2))*(2^(1/2)+(-3*x^2-2)^
(1/2))*(-x^2/(2^(1/2)+(-3*x^2-2)^(1/2))^2)^(1/2)/x*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {325, 234, 220} \[ \frac {\sqrt [4]{-3 x^2-2}}{2 x}+\frac {\sqrt {3} \sqrt {-\frac {x^2}{\left (\sqrt {-3 x^2-2}+\sqrt {2}\right )^2}} \left (\sqrt {-3 x^2-2}+\sqrt {2}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{-3 x^2-2}}{\sqrt [4]{2}}\right )|\frac {1}{2}\right )}{4 \sqrt [4]{2} x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(-2 - 3*x^2)^(3/4)),x]

[Out]

(-2 - 3*x^2)^(1/4)/(2*x) + (Sqrt[3]*Sqrt[-(x^2/(Sqrt[2] + Sqrt[-2 - 3*x^2])^2)]*(Sqrt[2] + Sqrt[-2 - 3*x^2])*E
llipticF[2*ArcTan[(-2 - 3*x^2)^(1/4)/2^(1/4)], 1/2])/(4*2^(1/4)*x)

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 234

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[(2*Sqrt[-((b*x^2)/a)])/(b*x), Subst[Int[1/Sqrt[1 - x^4/a],
 x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (-2-3 x^2\right )^{3/4}} \, dx &=\frac {\sqrt [4]{-2-3 x^2}}{2 x}-\frac {3}{4} \int \frac {1}{\left (-2-3 x^2\right )^{3/4}} \, dx\\ &=\frac {\sqrt [4]{-2-3 x^2}}{2 x}+\frac {\left (\sqrt {\frac {3}{2}} \sqrt {-x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^4}{2}}} \, dx,x,\sqrt [4]{-2-3 x^2}\right )}{2 x}\\ &=\frac {\sqrt [4]{-2-3 x^2}}{2 x}+\frac {\sqrt {3} \sqrt {-\frac {x^2}{\left (\sqrt {2}+\sqrt {-2-3 x^2}\right )^2}} \left (\sqrt {2}+\sqrt {-2-3 x^2}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{-2-3 x^2}}{\sqrt [4]{2}}\right )|\frac {1}{2}\right )}{4 \sqrt [4]{2} x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 46, normalized size = 0.44 \[ -\frac {\left (\frac {3 x^2}{2}+1\right )^{3/4} \, _2F_1\left (-\frac {1}{2},\frac {3}{4};\frac {1}{2};-\frac {3 x^2}{2}\right )}{x \left (-3 x^2-2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(-2 - 3*x^2)^(3/4)),x]

[Out]

-(((1 + (3*x^2)/2)^(3/4)*Hypergeometric2F1[-1/2, 3/4, 1/2, (-3*x^2)/2])/(x*(-2 - 3*x^2)^(3/4)))

________________________________________________________________________________________

fricas [F]  time = 0.69, size = 0, normalized size = 0.00 \[ \frac {2 \, x {\rm integral}\left (\frac {3 \, {\left (-3 \, x^{2} - 2\right )}^{\frac {1}{4}}}{4 \, {\left (3 \, x^{2} + 2\right )}}, x\right ) + {\left (-3 \, x^{2} - 2\right )}^{\frac {1}{4}}}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2-2)^(3/4),x, algorithm="fricas")

[Out]

1/2*(2*x*integral(3/4*(-3*x^2 - 2)^(1/4)/(3*x^2 + 2), x) + (-3*x^2 - 2)^(1/4))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-3 \, x^{2} - 2\right )}^{\frac {3}{4}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2-2)^(3/4),x, algorithm="giac")

[Out]

integrate(1/((-3*x^2 - 2)^(3/4)*x^2), x)

________________________________________________________________________________________

maple [F]  time = 0.04, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (-3 x^{2}-2\right )^{\frac {3}{4}} x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-3*x^2-2)^(3/4),x)

[Out]

int(1/x^2/(-3*x^2-2)^(3/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-3 \, x^{2} - 2\right )}^{\frac {3}{4}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2-2)^(3/4),x, algorithm="maxima")

[Out]

integrate(1/((-3*x^2 - 2)^(3/4)*x^2), x)

________________________________________________________________________________________

mupad [B]  time = 4.73, size = 36, normalized size = 0.34 \[ -\frac {2\,3^{1/4}\,{\left (\frac {2}{x^2}+3\right )}^{3/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {3}{4},\frac {5}{4};\ \frac {9}{4};\ -\frac {2}{3\,x^2}\right )}{15\,x\,{\left (-3\,x^2-2\right )}^{3/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(- 3*x^2 - 2)^(3/4)),x)

[Out]

-(2*3^(1/4)*(2/x^2 + 3)^(3/4)*hypergeom([3/4, 5/4], 9/4, -2/(3*x^2)))/(15*x*(- 3*x^2 - 2)^(3/4))

________________________________________________________________________________________

sympy [C]  time = 0.84, size = 34, normalized size = 0.32 \[ \frac {\sqrt [4]{2} e^{\frac {i \pi }{4}} {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {1}{2} \end {matrix}\middle | {\frac {3 x^{2} e^{i \pi }}{2}} \right )}}{2 x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-3*x**2-2)**(3/4),x)

[Out]

2**(1/4)*exp(I*pi/4)*hyper((-1/2, 3/4), (1/2,), 3*x**2*exp_polar(I*pi)/2)/(2*x)

________________________________________________________________________________________